A METHOD TO DIFFERENTIATE ISOMERIC C-GLUCOSYL CHROMONES, ISOFLAVONES AND XANTHONES

DAVID KEITH HOLDSWORTH

Department of Chemistry, University of Papua New Guinea, Boroko, Papua, New Guinea

(Received 10 December 1972 Accepted 26 February 1973)

Key Word Index—C-glucosyl compounds, chromones, flavanones, flavanones, isoflavones, xanthones, NMR spectra

Abstract—6-C- and 8-C-glucosyl isomeric chromones and isoflavones can be readily distinguished by a study of the NMR signals of their acetates. In a similar manner 2-C- and 4-C-glucosylxanthones can be distinguished

INTRODUCTION

THE NMR signals of the acetates of some naturally occurring and synthetic C-glucosyl compounds in CDCl₃ have been examined by Gentili and Horowitz ¹ They noted that the signals of the 2"-O-acetyl and 6"-O-acetyl methyl protons of 8-C-glucosylflavone acetates were found at higher fields than those of the corresponding 6-C-glucosyl compounds (see Table 1). The greater shielding of the 6"-O-acetyl in 8-C-glucosylflavone acetates is attributed to the acetyl methyl protons lying in the diamagnetic region of the phenyl B ring of the flavone nucleus

The 2"-O-acetyl signal of all C-glucosyl acetates is found at a higher field due to the shielding by the aromatic A ring to which the glucosyl residue is linked. Gentili and Horowitz suggest the extra shielding of this group in 8-C-glucosylflavone acetates is due to some shielding by the phenyl B ring.

RESULTS AND DISCUSSION

Aloesin (I), a C-glucosylchromone, has recently been isolated and its sugar moiety assigned to the 8-position of the chromone nucleus ² The above hypothesis would predict that the 2"-O-acetyl and 6"-O-acetyl methyl signals of acetylated 8-C-glucosylchromones, which lack a phenyl B ring, would be in the 'normal' range (δ 1 80–1 83) and (δ 2 01–2 04) respectively. The 6"-O-acetyl signals of aloesin and deacetylaloesin (II) pentaacetates are indeed found to be in the 'normal' range but their respective 2"-O-acetyl signals are found at the higher field (see Table 2). Dreiding models show that the 2"-O-acetyl methyl group of an acetylated 8-C-glucosylchromone is subjected to shielding by the aromatic A ring and the pyrone C ring The 2"-O-acetyl methyl group of an acetylated 6-C-glucosylchromone is also shielded by the aromatic A ring but not by the pyrone C ring

Puerarin (III) hexaacetate,³ an 8-C-glucosylisoflavone gives the following acetate signals, 2''-O-acetyl (δ 1 72) and 6''-O-acetyl (δ 2 05) Again only the 2''-O-acetyl group is found at the higher field Dreiding models show that neither the 2''- nor the 6''-O-acetyl methyl groups of puerarin hexaacetate are shielded by the phenyl B ring, which is attached at C-3, but the 2''-O-acetyl is shielded by the pyrone C ring.

¹ GENTILI, B and HOROWITZ, R M (1968) J Org Chem 33, 1571

² HAYNES, L J and HOLDSWORTH, D K (1970) J Chem Soc C, 2581

³ HILLIS, W E and HORN, D H S (1965) Australian J Chem 18, 531

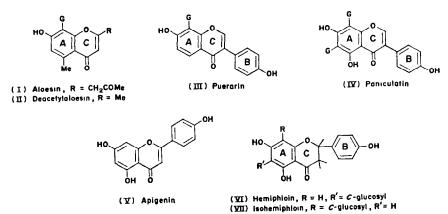
Paniculatin is the first di-C-glucosylisoflavone to be recorded and has been shown to be genistein-6,8-di-C-glucoside (IV) 4 Its undecaacetate integrates for eight acetyl methyl groups, one at δ 1 75, a second at δ 1 85 and the others at δ 2 05 The geometry of the molecule is such that the sugar acetyl methyl groups are not shielded by the C-3 phenyl B ring The 2''-O-acetyl group of the 8-C-glucosyl unit is shielded by the pyrone C ring whilst that of the 6-C-glucosyl unit is not Their signals are found at the higher field and the 'normal' range respectively Both 6''-O-acetyl signals are found in the 'normal' range

Table 1 Chemical shift of acetyl methyl protons of acetylated C-glucosylflavones in deuteriochloroform¹

	2"-O-acetyl		6 -O-acetyl	
	Normal range 1 80-1 83	Higher field 1 70-1 73	Normal range 2 01-2 04	Higher field 1 90-1 95
6-C-Glucosylflavones				
Isovitexin heptaacetate	1 83		2 04	
Keyakının heptaacetate	1 80		2 01	
Isoorientin octaacetate	1 82		2 02	
6-C-Glucosyldiosmetin heptaacetate	1 81		2 02	
8-C-Glucosylflavones				
Vitexin heptaacetate		1 73		1 91
Baylın hexaacetate		1 72		1 90
7,4'-Dimethylbayintetraacetate		1 70		1 91
Cytisoside hexaacetate		1 73		1 92
Orientin octaacetate		1 72		1 95
8-C-glucosyldiosmetin heptaacetate		1 71		1 94

A di-C-glycosylflavone has been isolated and shown to be a 6,8-di-C-glycosyl derivative of apigenin (V) 5 Its acetate shows three acetyl methyl signals at a higher field (δ 1 77, 1 82 and 1 98) and others below δ 2 02 6 The first two higher field signals can be assigned to the two 2"-O-acetyl groups in the sugar moieties. The group which receives slightly extra shielding (δ 1 77) can be assigned to the 8-C-glycosyl and the other (δ 1 82) to the 6-C-glycosyl. The signal δ 1 98 can be assigned to the 6"-O-acetyl group of the 8-C-glycosyl which is shielded by the B ring of the flavone nucleus. It is significant that a similar signal is not found in the spectrum of paniculatin. The geometry of the isoflavone molecule is such that the 6"-O-

⁶ Markham, K R (1972) personal communication


⁴ NARAYANAN, V and SESHADRI, T R (1971) Indian J Chem 9, 14

⁵ Markham, K. R., Porter, L. J. and Brehm, B. G. (1969) Phytochemistry 8, 2193

acetyl groups of 6-C and 8-C glucosyl derivatives are not shielded by the B ring and both signals appear in the 'normal' range The signals assigned to the 8-C-glycosyl 2"-O-acetyl groups of di-C-glycosyl flavone and isoflavone were found at a slightly lower field than those of the corresponding group in a mono-C-glycosyl compound Examination of models indicates that steric hindrance between the two bulky acetylated sugar units may well reduce the shielding of the 2"-O-acetyl group by the aromatic A ring or the pyrone C ring of the molecule

Table 2. Chemical shift of acetyl methyl protons of miscellaneous C-glucosyl compounds in deuteriochloroform

C-Glucosyl compound	2"-O-acetyl		6"-O-acetyl	
	Normal range 1 80–1 83	Higher field 1 69-1 73	Normal range 2 01-2 05	Higher field 1 90-1 95
Aloesin pentaacetate		1 69	2 01	
Deacetylaloesin pentaacetate		1 70	2 00	
Puerarın hexaacetate		1 72	2 05	
Paniculatin undecaacetate	1 85	1 75	2 05, 2 05	
Hemiphloin heptaacetate	1 83		2 03	
Hemiphloin hexaacetate	1 87		2 05	
Isohemiphloin heptaacetate	1 80		2 00	
Isohemichloin hexaacetate	1 86		2 01	

The acetates of hemiphloin (VI), a 6-C-glucosylfiavanone, and its 8-C isomer isohemophloin (VII) show 2"-O-acetyl methyl signals³ in the 'normal' range These compounds have a dihydropyrone C ring.

The acetates of mangiferin (VIII) and homomangiferin (IX), both 2-C-glucosylxanthones, and mangiferin trimethyl ether give signals of the 2"-O-acetyl groups in the range δ 1.77–1.79 7.8 The 2-position of a xanthone is equivalent to the 6-position of a chromone, flavone or isoflavone and models show that the 2"-O-acetyl groups are not shielded by the inner

⁷ HAYNES, L J and TAYLOR, D R (1966) J Chem Soc 19, 1685

ARITOMI, M and KAWASAKI, T (1970) Chem Pharm Bull (Tokyo) 18, 2224

TABLE 3 CHEMICAL SHIFT OF ACETYL METHYL PROTONS OF C-GLUCOSYL XANTHONES IN DEUTERIOCHLOROFORM

C-Glucosylxanthone	2"-O-acetyl		6"-O-acetyl	
	Normal range 1 77-1 79	Higher field 1 66-1 73	Normal range 2 01–2 05	Higher field
Mangiferin octaacetate	1 79		2 01	
Mangiferin heptaacetate	1 78		2 01	
3.6.7-Trimethoxymangiferin-				
pentaacetate	1 79		2 02	
3,6,7-Trimethoxymangiferin-				
tetraacetate	1 77		2 03	
Homomangiferin heptaacetate	1 78		2 02	
Isomangiferin octaacetate		1 73	2 03	
1,3,6,7-Tetramethoxyisomangiferin-				
tetraacetate		1 66	2 05	

RO OH OH OH OH OH OH O I I Somangiferin
$$R = H$$
 (X) Isomangiferin (IX) Homomangiferin, $R = Me$

Table 4 Range of 2"-O-acetyl methyl proton signals of acetylated C-glucosyl compounds

Chromone, offavone or flavone	δ 2 '-O-acetyl	Xanthone	δ 2′′- <i>O</i> -acetyl
6-C-Glucosyl 8-C-Glucosyl	1 80-1 83 (normal range) 1 69-1 73 (higher field)	2-C-Glucosyl 4-C-Glucosyl	1 77–1 79 (normal range) 1 66–1 73 (higher field)
	7 0 2 6 5 0 3	3 0 5 6 2 7	
	Chromone Flavone (2-phenyl)	Xanthone	

pyrone ring The acetates of isomangiferin (IX), a 4-C-glucosyixanthone, and isomangiferin methyl ether show 2"-O-acetyl signals at the higher field (see Table 3) The 4-position of a xanthone is equivalent to the 8-position of a chromone, flavone or isoffavone and the geometry of the molecule is such that the 2"-O-acetyl methyl group of these compounds are shielded by the pyrone ring

In assigning the position of the C-glucosyl group in a molecule, the extra shielding of the

⁹ ARITOMI, M and KAWASAKI, T (1970) Chem Pharm Bull (Tokyo) 18, 2327

2"-O-acetyl group by the pyrone C ring of certain C-glucosyl acetates can be of diagnostic value It is possible to differentiate isomeric chromones, isoflavones and xanthones, as well as flavones, by noting the positions of the 2"-O-acetyl NMR signals of their respective acetates (see Table 4)

EXPERIMENTAL

NMR spectra were measured on a Varian A60 spectrometer, with tetramethylsilane as internal standard, Aloesin pentaacetate (CDCl₃, δ) 1 69 (s, C₂-OAc), 2 01 (s, C₆-OAc), 2 06 (s, C₃- μ -OAc), 2 27 (s C₂-CH₂COCH₃), 2 40 (s, C₇-OAc), 2 79 (s, C₅-CH₃), 6 45 (s, C₃- μ), 6 84 (s, C₆- μ) and sugar proton signals (m) 3 5-5 0 ppm

Deacetylaloesin pentaacetate (CDCl₃, δ) 1 70 (s, C₂-OAc), 2 00 (s, C₆-OAc), 2 06 (s, C₃- $\frac{1}{4}$ -OAc), 2 39 (s, C₇-OAc and C₂-CH₃), 2 80 (s, C₅-CH₃), 6 09 (s, C₃-H), 6 80 (s, C₆-H) and sugar proton signals (m) 3 5-5 0 ppm

Acknowledgements—The author wishes to thank Professor L J Haynes (The Open University, England) for helpful discussions, Drs W R Chan, D R Taylor and E J Herbert (University of the West Indies, Jamaica) for measurement of NMR spectra and Dr K R Markham (D S I R, New Zealand) for an NMR spectrum of apigenin 6,8-di-C-glycoside